
Fast oxide-ion conductors in Bi2O3-V2O5 system: Bi108-xVxO162+x(x=4-9) with 3×3×3 superstructure
Author(s) -
Aleksandra Dapčević,
Aleksandar Radojković,
M. Žunić,
Milica Počuča-Nešić,
Olivera Milošević,
Goran Branković
Publication year - 2021
Publication title -
science of sintering/science of sintering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 25
eISSN - 1820-7413
pISSN - 0350-820X
DOI - 10.2298/sos2101055d
Subject(s) - monoclinic crystal system , superstructure , rietveld refinement , crystallography , ion , high resolution transmission electron microscopy , phase (matter) , materials science , chemistry , analytical chemistry (journal) , selected area diffraction , crystal structure , transmission electron microscopy , nanotechnology , physics , organic chemistry , chromatography , thermodynamics
In this study, the possibility to stabilize O2-ion conductors in Bi2O3-V2O5 system was investigated. Six pseudo-binary Bi2O3-V2O5 mixtures [3.50 < x(V2O5) < 8.50 mol%] were thermally treated at 1000?C for 1 h. The samples were characterized by XRD, HRTEM/SAED, DTA and EIS techniques. The high-temperature reaction between ? Bi2O3 and V2O5 resulted in formation of microcrystalline single-phase specimens containing the phase based on ?-Bi2O3 if V2O5 content was ? 4.63 mol%. The obtained phases exhibited main diffraction peaks corresponding to the simple cubic ?-Bi2O3 (space group Fm-3m) but Rietveld refinement showed a threefold repeat on a simple cubic sublattice indicating that the true unit cell is 3?3?3 supercell. Within proposed supercell, the octahedrally coordinated V5+ ions fully occupy 4a Wyckoff position and partially occupy 32f. The Bi3+ ions are placed at the rest of 32f and at 24e and 48h with full occupation. In total, 22 % of anionic sites are vacant. The ionic conductivity of phase with the lowest dopant content, i.e. Bi 103V5O167, amounts 0.283 S cm-1 at 800?C with the activation energy of 0.64(5) eV, which is comparable to the undoped ?-Bi2O3 known as the fastest ion conductor.