Some new congruences for (s,t)-regular bipartition functions
Author(s) -
Chandrashekar Adiga,
Abdelmejid Bayad,
Ranganatha Dasappa
Publication year - 2019
Publication title -
publications de l institut mathematique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.246
H-Index - 17
eISSN - 1820-7405
pISSN - 0350-1302
DOI - 10.2298/pim1920053a
Subject(s) - congruence relation , modulo , mathematics , combinatorics , discrete mathematics
Let Bs,t(n) denote the number of (s,t)-regular bipartitions of n. We prove several infinite families of congruences modulo t for Bs,t(n) where (s,t) ? {(2,7), (5?, 7), (3?, 11), (5?, 11), (3?, 17)}, ? ? 1.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom