On Chebyshev centers in metric spaces
Author(s) -
T. D. Narang
Publication year - 2019
Publication title -
publications de l institut mathematique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.246
H-Index - 17
eISSN - 1820-7405
pISSN - 0350-1302
DOI - 10.2298/pim1920047n
Subject(s) - metric space , mathematics , chebyshev filter , metric (unit) , uniqueness , point (geometry) , space (punctuation) , set (abstract data type) , center (category theory) , pure mathematics , discrete mathematics , mathematical analysis , computer science , geometry , operations management , chemistry , crystallography , economics , programming language , operating system
A Chebyshev center of a set A in a metric space (X,d) is a point of X best approximating the set A i.e., it is a point x0 ? X such that supy?A d(x0,y) = infx?X supy?A d(x,y). We discuss the existence and uniqueness of such points in metric spaces thereby generalizing and extending several known result on the subject.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom