The convolution of finite number of analytic functions
Author(s) -
Poonam Sharma,
Ravinder Krishna,
Janusz Sokół
Publication year - 2019
Publication title -
publications de l institut mathematique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.246
H-Index - 17
eISSN - 1820-7405
pISSN - 0350-1302
DOI - 10.2298/pim1919049s
Subject(s) - convolution (computer science) , multiplier (economics) , analytic function , convolution power , mathematics , circular convolution , riemann zeta function , convolution theorem , pure mathematics , algebra over a field , mathematical analysis , computer science , fourier analysis , artificial intelligence , fourier transform , artificial neural network , fractional fourier transform , economics , macroeconomics
We investigate various results associated with the convolution of finite number of analytic functions involving a certain multiplier operator (defined below). Some useful consequences including a result related to the zeta function are also mentioned.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom