
Effects of sintering temperature on structure and electrical properties of (Na0.48k0.473Li0.04Sr0.007)(Nb0.883Ta0.05Sb0.06Ti0.007)O3 piezoelectric ceramics
Author(s) -
ChengShong Hong,
Yi-Tian Hong
Publication year - 2021
Publication title -
processing and application of ceramics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.326
H-Index - 15
eISSN - 2406-1034
pISSN - 1820-6131
DOI - 10.2298/pac2101079h
Subject(s) - materials science , sintering , piezoelectricity , ceramic , dielectric , microstructure , ferroelectricity , phase transition , composite material , phase (matter) , stoichiometry , vacancy defect , condensed matter physics , optoelectronics , chemistry , physics , organic chemistry
In this study, the effects of sintering temperature on microstructure, dielectric and piezoelectric properties are investigated for the non-stoichiometric (Na0.48K0.473Li0.04Sr0.007)(Nb0.883Ta0.05Sb0.06Ti0.007)O3 (NKLNTSST) piezoelectric ceramics. The results suggest that the piezoelectric properties are enhanced owing to the more normal ferroelectric characteristics, higher density, more uniform grains and presence of polymorphic phase transition regions, which are observed with an increase in the sintering temperature up to 1080?C. The piezoelectric properties are weakened owing to the larger degree of diffuse phase transition and more cationoxygen-vacancy pairs with an increase in the sintering temperature above 1080?C. The best piezoelectric properties including kp = 40%, d33 = 288 pC/N, ?max = 72.12, loss = 2.57%, Ec = 13.45 kV/cm and Pr = 10.23 ?C/cm2 are obtained at the sintering temperature of 1080?C.