
Filament material evaluation for breast phantom fabrication using three-dimensional printing
Author(s) -
Jin Soo Lee,
Yong-In Jo,
Yeong-Rok Kang,
Yong-Uk Kye,
Park Kwang Il,
Dong-Yeon Lee
Publication year - 2020
Publication title -
nuclear technology and radiation protection
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.31
H-Index - 16
eISSN - 1452-8185
pISSN - 1451-3994
DOI - 10.2298/ntrp2004372l
Subject(s) - imaging phantom , mammography , polylactic acid , fused filament fabrication , materials science , biomedical engineering , mammary gland , breast tissue , nuclear medicine , medicine , 3d printing , breast cancer , composite material , cancer , polymer
In this study, a method of directly evaluating the dose received by the highly radiation-sensitive mammary gland during mammography was investigated, and a corresponding breast phantom was produced that expresses a mammary gland, as an alternative to the existing mixed-form phantom. After designing this breast phantom by performing Monte Carlo simulations, the glandular dose was evaluated and compared with that of a mixed-form phantom. Then, dose evaluation was conducted for current commercial filament materials that could be used to fabricate the phantom by 3-D printing. The results showed that the dose received by the mammary gland was in the range of 1.089-1.237 mGy, and the average difference from that determined using the mixed-form phantom was approximately 1.2 %. Among the filament materials, polylactic acid showed the dose that was the most similar to that of the mammary gland tissue, differing by approximately 2.4 %. Overall, the research results suggest that it is meaningful to evaluate the glandular dose using the developed phantom instead of a mixed-form phantom. Besides, polylactic acid is the most appropriate material for fabricating the mammary gland tissue using a 3-D printer.