
Assessment of atmospheric dispersion stability based on the atmospheric boundary layer monitoring at the Belorussian nuclear power plant site
Author(s) -
Fedor Bryukhan
Publication year - 2020
Publication title -
nuclear technology and radiation protection
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.31
H-Index - 16
eISSN - 1452-8185
pISSN - 1451-3994
DOI - 10.2298/ntrp2001050b
Subject(s) - atmospheric dispersion modeling , environmental science , planetary boundary layer , atmospheric instability , nuclear power plant , dispersion (optics) , nuclear power , thermal power station , atmospheric sciences , meteorology , air pollution , wind speed , nuclear physics , geology , geography , physics , chemistry , engineering , waste management , organic chemistry , optics , turbulence
Due to the fact that the potential threat to the health to the public living near nuclear power plants is largely determined by the level of air pollution by radionuclides, identification of the dispersion conditions of pollutants in the atmospheric boundary layer is of great importance in the development of engineering protection means for nuclear facilities. In turn, the engineering protection of nuclear power plants provides for the development of automated radiation monitoring systems and their main components, i. e. atmospheric boundary layer status monitoring systems. When analyzing and predicting the radiation situation in the vicinity of nuclear power plants, the determination of atmospheric dispersion variability parameters over time is essential. This research is aimed at assessing interannual and intra-annual variability of atmospheric dispersion parameters in the Belorussian nuclear power plant siting region based on the atmospheric boundary layer monitoring data. This study has revealed the relative interannual stability of the main average annual atmospheric dispersion characteristics throughout the observation period in 2015-2019. At the same time, the average seasonal values of the atmospheric boundary layer dispersion parameters are characterized by significant fluctuations thereof over the annual course. The feasibility of such monitoring for other potentially hazardous industrial facilities, such as thermal power plants and chemical plants, is also noted.