z-logo
open-access-imgOpen Access
Environmental dose rate assessment of ITER using the Monte Carlo method
Author(s) -
Alireza Karimian,
Amir Beheshti,
mohammadreza abdi,
Iraj Jabbari
Publication year - 2014
Publication title -
nuclear technology and radiation protection
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.31
H-Index - 16
eISSN - 1452-8185
pISSN - 1451-3994
DOI - 10.2298/ntrp1401034k
Subject(s) - tokamak , monte carlo method , thermonuclear fusion , nuclear engineering , equivalent dose , neutron , nuclear physics , effective dose (radiation) , dose rate , radiation protection , imaging phantom , physics , nuclear medicine , plasma , medical physics , medicine , engineering , mathematics , statistics
Exposure to radiation is one of the main sources of risk to staff employed in reactor facilities. The staff of a tokamak is exposed to a wide range of neutrons and photons around the tokamak hall. The International Thermonuclear Experimental Reactor (ITER) is a nuclear fusion engineering project and the most advanced experimental tokamak in the world. From the radiobiological point of view, ITER dose rates assessment is particularly important. The aim of this study is the assessment of the amount of radiation in ITER during its normal operation in a radial direction from the plasma chamber to the tokamak hall. To achieve this goal, the ITER system and its components were simulated by the Monte Carlo method using the MCNPX 2.6.0 code. Furthermore, the equivalent dose rates of some radiosensitive organs of the human body were calculated by using the medical internal radiation dose phantom. Our study is based on the deuterium-tritium plasma burning by 14.1 MeV neutron production and also photon radiation due to neutron activation. As our results show, the total equivalent dose rate on the outside of the bioshield wall of the tokamak hall is about 1 mSv per year, which is less than the annual occupational dose rate limit during the normal operation of ITER. Also, equivalent dose rates of radiosensitive organs have shown that the maximum dose rate belongs to the kidney. The data may help calculate how long the staff can stay in such an environment, before the equivalent dose rates reach the whole-body dose limits

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here