
New methods of controlled monolayer-to-multilayer deposition of Pt for designing electrocatalysts at an atomic level
Author(s) -
Stanko R. Brankovic,
J. X. Wang,
Radoslav R. Adžić
Publication year - 2001
Publication title -
journal of the serbian chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.227
H-Index - 45
eISSN - 1820-7421
pISSN - 0352-5139
DOI - 10.2298/jsc0112887b
Subject(s) - monolayer , electrocatalyst , deposition (geology) , nanoparticle , alloy , catalysis , platinum , materials science , inorganic chemistry , chemistry , electrode , metal , redox , chemical engineering , nanotechnology , electrochemistry , metallurgy , organic chemistry , paleontology , sediment , engineering , biology
Two new methods for monolayer-to-multileyer Pt deposition are presented. One involves Pt deposition by the replacement of an UPD metal monolayer on an electrode surface and the other the spontaneous deposition of Pt on Ru. The first method, exemplified by the replacement of a Cu monolayer on a Au(111) surface, occurs as a spontaneous irreversible redox reaction in which the Cu monolayer is oxidized by Pt cations, which are reduced and simultaneously deposited. The second method is illustrated by the deposition of Pt on a Ru(0001) surface and on carbon-supported Ru nanoparticles. This deposition takes place upon immersion of a UHV-prepared Ru(0001) crystal or Ru nanoparticles, reduced in H2, in a solution containing PtCl6 2- ions. The oxidation of Ru to RuOH by a local cell mechanism appears to be coupled with Pt deposition. This method facilitates the design of active Pt-Ru catalysts with ultimately low Pt loadings. Only a quarter of a monolayer of Pt on Ru nanoparticles yields an electrocatalyst with higher activity and CO tolerance for H2/CO oxidation than commercial Pt-Ru alloy electrocatalysts with considerably higher Pt loadings.