z-logo
open-access-imgOpen Access
Sulphuric acid leaching of low/medium grade managanese ores using a novel nitrogeneous reductant-NH3NH2HSO4
Author(s) -
D. Hariprasad,
Mamata Mohapatra,
S. Anand
Publication year - 2013
Publication title -
journal of mining and metallurgy. section b, metallurgy/journal of mining and metallurgy. section b, metallurgy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 20
eISSN - 2217-7175
pISSN - 1450-5339
DOI - 10.2298/jmmb120806024h
Subject(s) - manganese , leaching (pedology) , chemistry , metallurgy , pulp (tooth) , nuclear chemistry , extraction (chemistry) , stoichiometry , materials science , geology , soil water , chromatography , medicine , organic chemistry , pathology , soil science
Low and medium grade land as well sea based manganese ores were used for manganese extraction in H2SO4 - NH3NH2HSO4 (hydrazine sulphate) medium For land based Mn ores, only Mn recovery is important but for sea nodules which contain substantial amounts Co, Ni, and Cu, their recovery is equally important. In the present studies four samples used were: Indian ocean manganese nodules, medium and low grade Mn ores of Gujarat, and low grade Mn ore of Orissa, India. The Mn content of these ores varied from 15 to 39%. The objective of this work is to establish a reductant which can be used for leaching Mn from all types of ores. The optimum conditions established for nodules by varying parameters such as time, temperature, pulp density, H2SO4 and NH3NH2HSO4 concentrations were: pulp density 10%, time 0.5h, temperature 110ºC, NH3NH2HSO4 3.25 g/10g, H2SO4 2.0% (v/v) for 96.9% Mn, 85.25% Cu, 92.58% Ni and 76.5% Co extractions. More than 92% Mn could be leached from different types of ores by varying amount of reductant and acid concentration at 35ºC. Depending on Mn content 1.0 to 1.2 times stochiometric amount of reductant and 1.5 to 1.8 times sulphuric acid were required for >92% Mn extraction

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here