
Guidelines for general adsorption kinetics modeling
Author(s) -
Bojana Obradović
Publication year - 2020
Publication title -
hemijska industrija
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.147
H-Index - 19
eISSN - 2217-7426
pISSN - 0367-598X
DOI - 10.2298/hemind200201006o
Subject(s) - adsorption , diffusion , computer science , particle (ecology) , interpretation (philosophy) , statistical physics , kinetics , biochemical engineering , model selection , thermodynamics , management science , biological system , process engineering , chemistry , artificial intelligence , physics , economics , engineering , geology , oceanography , quantum mechanics , biology , programming language
Adsorption processes are widely used in different technological areas and industry sectors, thus continuously attracting attention in the scientific research and publications. Design and scale-up of these processes are essentially based on the knowledge and understanding of the adsorption kinetics and mechanism. Adsorption kinetics is usually modeled by using several well-known models including the pseudo-first and pseudo-second order models, the Elovich equation, and the intra-particle diffusion based models. However, in the scientific literature there are a significant number of cases with the inappropriate use of these models, utilization of erroneous expressions, and incorrect interpretation of the obtained results. This paper is especially focused on applications of the pseudo-second order, intra-particle diffusion and the Weber-Morris models, which are illustrated with typical examples. Finally, general recommendations for selection of the appropriate kinetic model and model assumptions, data regression analysis, and evaluation and presentation of the obtained results are outlined.