
Photocatalytic degradation of synthetic dye under sunlight
Author(s) -
Dušan Ž. Mijin,
Mirko Jugurdzija,
Petar Jovančić
Publication year - 2007
Publication title -
hemijska industrija
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.147
H-Index - 19
eISSN - 2217-7426
pISSN - 0367-598X
DOI - 10.2298/hemind0701007m
Subject(s) - photodegradation , mineralization (soil science) , catalysis , photocatalysis , degradation (telecommunications) , chemistry , pollutant , decomposition , photochemistry , textile , environmental chemistry , chemical engineering , materials science , organic chemistry , engineering , telecommunications , computer science , nitrogen , composite material
Synthetic dyes are widely used in the textile industry. Dye pollutants from the textile industry are an important source of environmental contamination. The majority of these dyes are toxic, mostly non-biodegradable and also resistant to decomposition by physico-chemical methods. Among new oxidation methods or "advanced oxidation processes", heterogeneous photocatalysis appears as an emerging destructive technology leading to the total mineralization of many organic pollutants. CI Basic Yellow 28 (BY28), commonly used as a textile dye, could be photocatalytically degraded using TiU2 as catalyst under sunlight. The effect of some parameters such as the initial catalyst concentration, initial dye concentration, initial NaCl and Na2CO3 concentrations, pH, H2O2 and type of catalyst on the degradation rate of BY28 was examined in details. The presence of NaCl and Na2CO3 led to inhibition of the photodegradation process. The highest photodegradation rate was observed at high pH, while the rate was the lowest at low pH. Increase of the initial H2O2 concentration increased the initial BY28 photodegradation efficiency. ZnO was a better catalyst than TiO2 at low dye concentrations