Single-electron capture in ion-ion collisions
Author(s) -
Danilo Delibašić,
Nenad Milojević,
Ivan Mančev
Publication year - 2020
Publication title -
facta universitatis - series physics chemistry and technology
Language(s) - English
Resource type - Journals
eISSN - 2406-0879
pISSN - 0354-4656
DOI - 10.2298/fupct2002131d
Subject(s) - electron capture , ion , projectile , atomic physics , scaling , electron , physics , scaling law , boundary (topology) , heavy ion , nuclear physics , mathematics , quantum mechanics , geometry , mathematical analysis
The prior versions of the three-body boundary-corrected first Born approximation (CB1-3B) and the three-body boundary-corrected continuum intermediate states method (BCIS-3B) are applied to calculate the state-selective and state-summed total cross sections for single-electron capture from hydrogen-like ion targets (He+, Li2+) by fast completely stripped projectiles (H+, He2+, Li3+). All calculations are carried out for single-electron capture into arbitrary n l m final states of the projectiles, up to n = 4. The contributions from higher n shells are included using the Oppenheimer n?3 scaling law. The present results are found to be in satisfactory agreement with the available experimental data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom