
Investigation of the energy efficiency of horizontally mounted solar module soiled with CaCo3
Author(s) -
Ivana S. Radonjić,
Tomislav Pavlović
Publication year - 2017
Publication title -
facta universitatis. series: physics, chemistry and technology
Language(s) - English
Resource type - Journals
eISSN - 2406-0879
pISSN - 0354-4656
DOI - 10.2298/fupct1702057r
Subject(s) - open circuit voltage , solar energy , energy conversion efficiency , calcium carbonate , deposition (geology) , materials science , photovoltaic system , environmental science , electrical engineering , voltage , optoelectronics , composite material , engineering , geology , paleontology , sediment
Soiling is a term used to describe the deposition of dust (dirt) on solar modules, which reduces the amount of solar radiation reaching the solar cells. Deposition of dust on solar modules can make the operation of the entire PV system - more difficult and, therefore, lead to the generation of less electric energy. Soiling of solar modules also influences solar modules parameters (short-circuit current, open-circuit voltage, maximum power, fill factor and efficiency). This paper presents the results of the investigation on the impact different quantities of calcium carbonate (CaCO3) deposition have on the energy efficiency of horizontally mounted solar modules. The short-circuit current, power and efficiency decrease with increasing the mass of CaCO3 deposited on the horizontally mounted solar module. The open-circuit voltage and fill factor very slightly increase with increasing the mass of CaCO3 deposited on the horizontally mounted solar module. Upon soiling with 1 g of calcium carbonate, the solar module efficiency decreased by 4.6% in relation to the clean solar module, upon soiling with 2 g of calcium carbonate it decreased by 6.0%, and upon soiling with 3 g of calcium carbonate it decreased by 12.9% in relation to the clean solar module. It can be concluded that the power and energy efficiency of the solar module decrease due to the increased amount of calcium carbonate.