
An extended Green-Sasao hierarchy of canonical ternary Galois forms and Universal Logic Modules
Author(s) -
Anas N. AlRabadi
Publication year - 2017
Publication title -
facta universitatis. series electronics and energetics/facta universitatis. series: electronics and energetics
Language(s) - English
Resource type - Journals
eISSN - 2217-5997
pISSN - 0353-3670
DOI - 10.2298/fuee1701049a
Subject(s) - mathematics , ternary operation , realization (probability) , galois theory , generalization , hierarchy , field (mathematics) , binary number , binary operation , pure mathematics , discrete mathematics , algebra over a field , arithmetic , computer science , mathematical analysis , statistics , economics , market economy , programming language
A new extended Green-Sasao hierarchy of families and forms with a new sub-family for many-valued Reed-Muller logic is introduced. Recently, two families of binary canonical Reed-Muller forms, called Inclusive Forms (IFs) and Generalized Inclusive Forms (GIFs) have been proposed, where the second family was the first to include all minimum Exclusive Sum-Of-Products (ESOPs). In this paper, we propose, analogously to the binary case, two general families of canonical ternary Reed-Muller forms, called Ternary Inclusive Forms (TIFs) and their generalization of Ternary Generalized Inclusive Forms (TGIFs), where the second family includes minimum Galois Field Sum-Of-Products (GFSOPs) over ternary Galois field GF(3). One of the basic motivations in this work is the application of these TIFs and TGIFs to find the minimum GFSOP for many-valued input-output functions within logic synthesis, where a GFSOP minimizer based on IF polarity can be used to minimize the many-valued GFSOP expression for any given function. The realization of the presented S/D trees using Universal Logic Modules (ULMs) is also introduced, whereULMs are complete systems that can implement all possible logic functions utilizing the corresponding S/D expansions of many-valued Shannon and Davio spectral transforms.