Open Access
The current status of power semiconductors
Author(s) -
J. Vobecký
Publication year - 2015
Publication title -
facta universitatis. series electronics and energetics/facta universitatis. series: electronics and energetics
Language(s) - English
Resource type - Journals
eISSN - 2217-5997
pISSN - 0353-3670
DOI - 10.2298/fuee1502193v
Subject(s) - silicon carbide , materials science , optoelectronics , jfet , high electron mobility transistor , engineering physics , reliability (semiconductor) , power semiconductor device , insulated gate bipolar transistor , semiconductor device , diode , silicon , mosfet , electrical engineering , semiconductor , gallium nitride , power (physics) , voltage , transistor , nanotechnology , engineering , field effect transistor , physics , quantum mechanics , layer (electronics) , metallurgy
Trends in the design and technology of power semiconductor devices are discussed on the threshold of the year 2015. Well established silicon technologies continue to occupy most of applications thanks to the maturity of switches like MOSFET, IGBT, IGCT and PCT. Silicon carbide (SiC) and gallium nitride (GaN) are striving to take over that of the silicon. The most relevant SiC device is the MPS (JBS) diode, followed by MOSFET and JFET. GaN devices are represented by lateral HEMT. While the long term reliability of silicon devices is well trusted, the SiC MOSFETs and GaN HEMTs are struggling to achieve a similar confidence. Two order higher cost of SiC equivalent functional performance at device level limits their application to specific cases, but their number is growing. Next five years will therefore see the co-existence of these technologies. Silicon will continue to occupy most of applications and dominate the high-power sector. The wide bandgap devices will expand mainly in the 600 - 1200 V range and dominate the research regardless of the voltage class.