z-logo
open-access-imgOpen Access
On A-numerical radius inequalities for 2 x 2 operator matrices-II
Author(s) -
Satyajit Sahoo
Publication year - 2021
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil2115237s
Subject(s) - mathematics , operator (biology) , radius , operator matrix , spectral radius , diagonal matrix , diagonal , bounded function , matrix (chemical analysis) , numerical range , bounded operator , pure mathematics , mathematical analysis , combinatorics , algebra over a field , eigenvalues and eigenvectors , geometry , quantum mechanics , biochemistry , chemistry , physics , computer security , repressor , materials science , computer science , transcription factor , composite material , gene
Rout et al. [Linear Multilinear Algebra 2020, DOI: 10.1080/03081087.2020.1810201] presented certain A-numerical radius inequalities for 2x2 operator matrices and further results on A-numerical radius of certain 2x2 operator matrices are obtained by Feki [Hacet. J. Math. Stat., 2020, DOI:10.15672/hujms.730574], very recently. The main goal of this article is to establish certain A-numerical radius equalities for operator matrices. Several new upper and lower bounds for the A-numerical radius of 2 x 2 operator matrices has been proved, where A be the 2 x 2 diagonal operator matrix whose diagonal entries are positive bounded operator A. Further, we prove some refinements of earlier A-numerical radius inequalities for operators.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom