Some mathematical properties of the geometric-arithmetic index/coindex of graphs
Author(s) -
Stefan Stankov,
Marjan Matejić,
Igor Milovanović,
Emina Milovanović
Publication year - 2021
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil2115045s
Subject(s) - mathematics , combinatorics , vertex (graph theory) , graph , simple graph , discrete mathematics , topological index , degree (music) , arithmetic , physics , acoustics
Let G = (V,E), V = {1,2,...,n}, be a simple connected graph of order n, size m with vertex degree sequence d1 ? d2 ? ... ? dn > 0, di = d(vi). The geometric-arithmetic topological index of G is defined as GA(G) = ? i~j 2? didj/di+dj, whereas the geometric-arithmetic coindex as GA?(G) = ? i~/j 2 ? didj/di+dj . New lower bounds for GA(G) and GA(G) in terms of some graph parameters and other invariants are obtained.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom