z-logo
open-access-imgOpen Access
Atomic decompositions in weighted Bergman spaces of analytic functions on strictly pseudoconvex domains
Author(s) -
Miloš Arsenović
Publication year - 2021
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil2108545a
Subject(s) - mathematics , bounded function , domain (mathematical analysis) , boundary (topology) , bergman kernel , pure mathematics , analytic function , bergman space , pseudoconvex function , decomposition , mathematical analysis , geometry , chemistry , organic chemistry , convex optimization , regular polygon , convex combination
We construct an atomic decomposition of the weighted Bergman spaces Ap?(D) (0 -1) of analytic functions on a bounded strictly pseudoconvex domain D in Cn with smooth boundary. The atoms used are atoms in the real-variable sense.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom