Neutrosophic soft δ-topology and neutrosophic soft δ-compactness
Author(s) -
Ahu Açıkgöz,
Ferhat Esenbel
Publication year - 2020
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil2010441a
Subject(s) - soft set , closure (psychology) , mathematics , compact space , topological space , topology (electrical circuits) , pure mathematics , computer science , artificial intelligence , combinatorics , fuzzy logic , economics , market economy
We introduce the concepts of neutrosophic soft ?-interior, neutrosophic soft quasi-coincidence, neutrosophic soft q-neighbourhood, neutrosophic soft regular open set, neutrosophic soft ?-closure, neutrosophic soft ?-closure and neutrosophic soft semi open set. It is also shown that the set of all neutrosophic soft ?-open sets is a neutrosophic soft topology, which is called the neutrosophic soft ?-topology. We obtain equivalent forms of neutrosophic soft ?-continuity. Moreover, the notions of neutrosophic soft ?-compactness and neutrosophic soft locally ?-compactness are defined and their basic properties under neutrosophic soft ?-continuous mappings are investigated.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom