z-logo
open-access-imgOpen Access
Chains of three-dimensional evolution algebras: A description
Author(s) -
Anvar Imomkulov,
V Ruiz Velasco
Publication year - 2020
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil2010175i
Subject(s) - digraph , mathematics , rank (graph theory) , property (philosophy) , basis (linear algebra) , pure mathematics , algebra over a field , combinatorics , geometry , philosophy , epistemology
In this paper we describe locally all the chains of three-dimensional evolution algebras (3-dimensional CEAs). These are families of evolution algebras with the property that their structure matrices with respect to a certain natural basis satisfy the Chapman-Kolmogorov equation. We do it by describing all 3-dimensional CEAs whose structure matrices have a fixed rank equal to 3, 2 and 1, respectively. We show that arbitrary CEAs are locally CEAs of fixed rank. Since every evolution algebra can be regarded as a weighted digraph, this allows us to understand and visualize time-dependent weighted digraphs with 3 nodes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom