z-logo
open-access-imgOpen Access
Uniform boundedness of Szász-Mirakjan-Kantorovich operators in Morrey spaces with variable exponents
Author(s) -
Yoshihiro Sawano,
Xinxin Tian,
Jingshi Xu
Publication year - 2020
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil2007109s
Subject(s) - mathematics , lp space , bounded function , operator (biology) , mathematical analysis , pure mathematics , operator theory , variable (mathematics) , exponent , maximal operator , banach space , biochemistry , chemistry , linguistics , philosophy , repressor , transcription factor , gene
The Sz?sz-Mirakjan-Kantorovich operators and the Baskakov-Kantorovich operators are shown to be controlled by the Hardy-Littlewood maximal operator. The Sz?sz-Mirakjan-Kantorovich operators and the Baskakov-Kantorovich operators turn out to be uniformly bounded in Lebesgue spaces and Morrey spaces with variable exponents when the integral exponent is global log-H?lder continuous.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom