z-logo
open-access-imgOpen Access
Uniform boundedness of Szász-Mirakjan-Kantorovich operators in Morrey spaces with variable exponents
Author(s) -
Yoshihiro Sawano,
Xinxin Tian,
Jiliang Xu
Publication year - 2020
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil2007109s
Subject(s) - mathematics , lp space , bounded function , operator (biology) , mathematical analysis , pure mathematics , operator theory , variable (mathematics) , exponent , maximal operator , banach space , biochemistry , chemistry , linguistics , philosophy , repressor , transcription factor , gene
The Sz?sz-Mirakjan-Kantorovich operators and the Baskakov-Kantorovich operators are shown to be controlled by the Hardy-Littlewood maximal operator. The Sz?sz-Mirakjan-Kantorovich operators and the Baskakov-Kantorovich operators turn out to be uniformly bounded in Lebesgue spaces and Morrey spaces with variable exponents when the integral exponent is global log-H?lder continuous.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here