z-logo
open-access-imgOpen Access
Oscillatory and asymptotic behavior of solutions for second-order mixed nonlinear integro-dynamic equations with maxima on time scales
Author(s) -
H. A. Agwa,
Mokhtar A. Abdel Naby,
Heba M. Arafa
Publication year - 2019
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil1910907a
Subject(s) - mathematics , maxima , dynamic equation , order (exchange) , nonlinear system , mathematical physics , mathematical analysis , pure mathematics , physics , quantum mechanics , art , finance , performance art , economics , art history
This paper is concerned with the oscillatory and asymptotic behavior for solutions of the following second-order mixed nonlinear integro-dynamic equations with maxima on time scales (r(t)(z?(t))?)? + ?t0 a(t,s) f(s, x(s))?s + ?n,i=1 qi(t) max s?[?i(t),?i(t)] x?(s) = 0, where z(t) = x(t) + p1(t)x(?1(t)) + p2(t)x(?2(t)), t ? [0,+?)T. The oscillatory behavior of this equation hasn?t been discussed before, also our results improve and extend some results established by Grace et al. [2] and [8].

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom