On a solvable class of product-type systems of difference equations
Author(s) -
Stevo Stević,
Bratislav Iričanin,
Zdeněk Šmarda
Publication year - 2017
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil1719113s
Subject(s) - mathematics , product (mathematics) , type (biology) , class (philosophy) , polynomial , product type , pure mathematics , combinatorics , mathematical analysis , geometry , ecology , artificial intelligence , computer science , biology , programming language
It is shown that the following class of systems of difference equations zn+1 = ?zanwbn, wn+1 = ?wcnzdn-2, n ? N0, where a,b,c,d ? Z, ?, ?, z-2, z-1, z0,w0 ? C \ {0}, is solvable, continuing our investigation of classification of solvable product-type systems with two dependent variables. We present closed form formulas for solutions to the systems in all the cases. In the main case, when bd ? 0, a detailed investigation of the form of the solutions is presented in terms of the zeros of an associated polynomial whose coefficients depend on some of the parameters of the system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom