
A graph-based feature selection method for learning to rank using spectral clustering for redundancy minimization and biased PageRank for relevance analysis
Author(s) -
JenYuan Yeh,
Chao-Ming Tsai
Publication year - 2022
Publication title -
computer science and information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.244
H-Index - 24
eISSN - 2406-1018
pISSN - 1820-0214
DOI - 10.2298/csis201220042y
Subject(s) - computer science , discriminative model , feature selection , pagerank , artificial intelligence , ranking svm , pattern recognition (psychology) , cluster analysis , graph , learning to rank , feature (linguistics) , data mining , ranking (information retrieval) , machine learning , theoretical computer science , linguistics , philosophy
This paper addresses the feature selection problem in learning to rank (LTR). We propose a graph-based feature selection method, named FS-SCPR, which comprises four steps: (i) use ranking information to assess the similarity between features and construct an undirected feature similarity graph; (ii) apply spectral clustering to cluster features using eigenvectors of matrices extracted from the graph; (iii) utilize biased PageRank to assign a relevance score with respect to the ranking problem to each feature by incorporating each feature?s ranking performance as preference to bias the PageRank computation; and (iv) apply optimization to select the feature from each cluster with both the highest relevance score and most information of the features in the cluster. We also develop a new LTR for information retrieval (IR) approach that first exploits FS-SCPR as a preprocessor to determine discriminative and useful features and then employs Ranking SVM to derive a ranking model with the selected features. An evaluation, conducted using the LETOR benchmark datasets, demonstrated the competitive performance of our approach compared to representative feature selection methods and state-of-the-art LTR methods.