
Families of log Legendre Chi function integrals
Author(s) -
Anthony Sofo
Publication year - 2021
Publication title -
applicable analysis and discrete mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.69
H-Index - 26
eISSN - 2406-100X
pISSN - 1452-8630
DOI - 10.2298/aadm200506021s
Subject(s) - polylogarithm , mathematics , riemann zeta function , legendre polynomials , function (biology) , legendre function , pure mathematics , dirichlet series , product (mathematics) , dirichlet l function , dirichlet distribution , mathematical analysis , arithmetic zeta function , prime zeta function , geometry , evolutionary biology , boundary value problem , biology
In this paper we investigate the representation of integrals involving the product of the Legendre Chi function, polylogarithm function and log function. We will show that in many cases these integrals take an explicit form involving the Riemann zeta function, the Dirichlet Eta function, Dirichlet lambda function and many other special functions. Some examples illustrating the theorems will be detailed.