z-logo
open-access-imgOpen Access
On the size of a restricted sumset with application to the binary expansion of √d
Author(s) -
Artūras Dubickas
Publication year - 2019
Publication title -
applicable analysis and discrete mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.69
H-Index - 26
eISSN - 2406-100X
pISSN - 1452-8630
DOI - 10.2298/aadm180720014d
Subject(s) - mathematics , combinatorics , integer (computer science) , binary number , square (algebra) , discrete mathematics , arithmetic , geometry , computer science , programming language
For any A ? N, let U(A,N) be the number of its elements not exceeding N. Suppose that A + A has V (A,N) elements not exceeding N, where the elements in the sumset A + A are counted with multiplicities. We first prove a sharp inequality between the size of U(A,N) and that of V (A,N) which, for the upper limits ?(A) = lim supN?? U(A,N)N-1/2 and ? (A) = lim sup N?? V (A,N)N-1, implies ?(A)2 ? 4 ? (A)/?. Then, as an application, we show that, for any square-free integer d > 1 and any ? > 0, there are infinitely many positive integers N such that at least (?8/ ?- ?) ?N digits among the first N digits of the binary expansion of ?d are equal to 1.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here