z-logo
open-access-imgOpen Access
Separation of Cartesian products of graphs into several connected components by the removal of edges
Author(s) -
Simon Špacapan
Publication year - 2021
Publication title -
applicable analysis and discrete mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.69
H-Index - 26
eISSN - 2406-100X
pISSN - 1452-8630
DOI - 10.2298/aadm160719018s
Subject(s) - cartesian product , mathematics , combinatorics , graph , connectivity , enhanced data rates for gsm evolution , cardinality (data modeling) , discrete mathematics , computer science , telecommunications , data mining
Let G = (V (G),E(G)) be a graph. A set S ? E(G) is an edge k-cut in G if the graph G-S = (V (G), E(G) \ S) has at least k connected components. The generalized k-edge connectivity of a graph G, denoted as ?k(G), is the minimum cardinality of an edge k-cut in G. In this article we determine generalized 3-edge connectivity of Cartesian product of connected graphs G and H and describe the structure of any minimum edge 3-cut in G2H. The generalized 3-edge connectivity ?3(G2H) is given in terms of ?3(G) and ?3(H) and in terms of other invariants of factors G and H.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom