
Antipodal Identification in the Schwarzschild Spacetime
Author(s) -
M. Socolovsky
Publication year - 2020
Publication title -
theoretical physics
Language(s) - English
Resource type - Journals
eISSN - 2519-9633
pISSN - 2519-9625
DOI - 10.22606/tp.2020.53002
Subject(s) - schwarzschild radius , antipodal point , spacetime , photon sphere , physics , singularity , schwarzschild metric , deriving the schwarzschild solution , geodesic , curvature , mathematical physics , topology (electrical circuits) , kerr metric , classical mechanics , geometry , mathematics , general relativity , quantum mechanics , combinatorics , charged black hole
"Through a Möbius transformation, we study aspects like topology, ligth cones, horizons, curvature singularity, lines of constant Schwarzschild coordinates r and t, null geodesics, and transformed metric, of the spacetime (SKS/2)^' that results from: i) the antipode identification in the Schwarzschild-Kruskal-Szekeres (SKS) spacetime, and ii) the suppression of the consequent conical singularity. In particular, one obtains a non simply-connected topology: (SKS/2)^' = R^2* ×S^2 and, as expected, bending light cones."