z-logo
open-access-imgOpen Access
Incorporating MNL Model into Random Forest for Travel Mode Detection
Author(s) -
Muhammad Awais Shafique,
Eiji Hato
Publication year - 2021
Publication title -
mehran university research journal of engineering and technology
Language(s) - English
Resource type - Journals
eISSN - 2413-7219
pISSN - 0254-7821
DOI - 10.22581/muet1982.2103.04
Subject(s) - mode (computer interface) , random forest , computer science , multinomial logistic regression , mode choice , decision tree , process (computing) , selection (genetic algorithm) , global positioning system , feature selection , machine learning , data mining , artificial intelligence , engineering , public transport , transport engineering , telecommunications , operating system
Mode choice models have been used widely to forecast the relative probabilities of using available travel modes. These depend on mode-related and traveler-related characteristics. On the other hand, smartphones are increasingly being used to collect sensors’ data relating to trips made after selection of a suitable mode. Such sensors’ data may be correlated with decision-making process of travelers regarding travel mode selection. Discrete Choice Modelling is used to simulate this decision-making process by computing utilities of various travel alternatives, and then calculating their respective probabilities of being selected. In this paper, multinomial logit (MNL) mode choice model is utilized to enhance the prediction capacity of supervised learning algorithm i.e. Weighted Random Forest. To make the procedure less energy-intensive, GPS data was used only to locate the origin and destination of any trip, to be incorporated in mode choice model. Afterwards only accelerometer data was utilized in feature selection for the learning algorithm. One tenth of the classified data was used to train the algorithm whereas rest was used to test it. Results suggested that with incorporation of MNL, the overall prediction accuracy of learning algorithm was increased from 93.75% to 99.08%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here