z-logo
open-access-imgOpen Access
Arsenic (III) Removal from Aqueous Water by Indigenous Iron Ore Adsorbent from Balochistan Province of Pakistan
Author(s) -
Zulfiqar Ali Bhatti
Publication year - 2021
Publication title -
mehran university research journal of engineering and technology
Language(s) - English
Resource type - Journals
eISSN - 2413-7219
pISSN - 0254-7821
DOI - 10.22581/muet1982.2101.02
Subject(s) - adsorption , freundlich equation , arsenic , langmuir , chemistry , nuclear chemistry , hematite , scanning electron microscope , aqueous solution , langmuir adsorption model , mineralogy , materials science , organic chemistry , composite material
The work focuses on the removal of Arsenic-III (As(III)) from water sample by an indigenous iron ore from Balochistan by adsorption method. Three iron ore samples were analyzed by X-Ray Diffractometer (XRD) and a sample from Shikarap containing iron 36.2% was selected because it contained the highest amount of hematite. The batch study was conducted to examine the adsorption by iron ore and maximum adsorption was observed at pH 6, 1/2 g dose per 50 mL solution, contact time 2 hr and shaking speed 150 rpm. At the optimized conditions, the removal was 89% when monitored at 50μg L-1 initial concentration of arsenic. The arsenic removal was monitored by Atomic Absorption Spectrometer (AAS) using hydride generation. Dubinin - Radushkevich (D-R), Freundlich and Langmuir's isotherms were examined. The highest adsorption capacityof iron ore for As(III) removal was observed 13.67 μg g-1 by Langmuir model and Freundlich isotherm indicated good adsorption intensity with value n = 1.512. Thermodynamic parameters revealed that adsorption was exothermic and physisorption. The Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray (EDX)techniques were applied to scan the surface morphology and the percentage elemental composition of samples respectively. SEM results demonstrated that Shikarap mineral grains are an oval shape and these were changed after the uptake of As(III). The EDX spectra of Shikarap mineral confirm the As(III) adsorption on particles as As 4.19%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here