Open Access
Modeling of Repairable Multi-State Systems with time-varying failure and repair rates using Equivalent Systems Dynamics Models
Author(s) -
Marcela Narváez Velasco,
Juan Carlos Osorio Gómez
Publication year - 2020
Publication title -
scientia et technica
Language(s) - English
Resource type - Journals
eISSN - 2344-7214
pISSN - 0122-1701
DOI - 10.22517/23447214.23551
Subject(s) - weibull distribution , markov chain , reliability (semiconductor) , failure rate , markov model , computer science , reliability engineering , markov process , constant (computer programming) , state (computer science) , mathematics , simulation , statistics , algorithm , engineering , physics , programming language , power (physics) , quantum mechanics
This paper treats with the reliability assessment of a Repairable Multi-State System (RMSS) by means of a Nonhomogeneous Continuous-Time Markov Chain (NH-CTMC). A RMSS run on different operating conditions that may be considered acceptable or unacceptable according to a defined demand level. In these cases, the commonly used technique is Homogeneous Continuous-Time Markov Chain (H-CTMC), since its solution is mathematically tractable. However, the H-CMTC involve that the time between state transitions is exponentially distributed, and the failure and repair rates are constants. It's certainly not true if the system components age with the operation or if the repair activities depend on the instant of time when the failure occurred. In these cases, the failure and repair rates are time-varying and the NH-CTMC is needed to be considered. Nevertheless, for these models the analytical solution may not exist and the use of others techniques is required. This paper proposes the use of an Equivalent Systems Dynamics Model (ESDM) to model a NH-CTMC. A ESDM represent the Markov Model (MM) by means of the language and the tools of the Systems Dynamics (SD), and the results are obtained by simulation. As an example, an RMSS with three components, failure rates associated with the Weibull distribution and repair rates associated with the Log-logistic distribution is developed. This example serves to identify the advantages and disadvantages of a ESDM to make model a RMSS and evaluate some reliability measures.