z-logo
open-access-imgOpen Access
PVC Recognition for Wearable ECGs Using Modified Frequency Slice Wavelet Transform and Convolutional Neural Network
Author(s) -
Zhongyao Zhao,
Xingyao Wang,
Zhipeng Cai,
Jianqing Li,
Chengyu Liu
Publication year - 2020
Publication title -
2019 computing in cardiology (cinc)
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.257
H-Index - 55
ISSN - 2325-887X
ISBN - 978-1-7281-6936-1
DOI - 10.22489/cinc.2019.138
Subject(s) - bioengineering , computing and processing , signal processing and analysis
Progress in wearable techniques makes the long-term daily electrocardiogram (ECG) monitoring possible. Premature ventricular contraction (PVC) is one of the most common cardiac arrhythmias. This study proposed a method by combining the modified frequency slice wavelet transform (MFSWT) and convolutional neural network (CNN). Training data are from the 2018 China physiological signal challenge (934 PVC and 906 non-PVC recordings). The first 10-s ECG waveforms in each recording were transformed into 2-D time-frequency images (frequency range of 0-50 Hz and size of 300 × 100) using MFSWT. A 25-layer CNN structure was constructed, which includes five convolution layers with kernel size of 3×3, five dropout layers, five ReLU layers, five maximum pooling layers with kernel size of 2 × 2, a flatten layer, two fully connected layers, as well as the input and output layers. Test data were recorded from 12-lead Smart ECG vests, including 775 PVC and 742 non-PVC recordings. Results showed that, the proposed method achieved a high accuracy of 97.89% for PVC/non-PVC episodes classification, indicating that the combination of MFSWT and CNN provides new insight to accurately identify PVC from the wearable ECG recordings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here