
A Multi-Task Imputation and Classification Neural Architecture for Early Prediction of Sepsis from Multivariate Clinical Time Series
Author(s) -
Yale Chang,
Jonathan Rubin,
Gregory Boverman,
Shruti Vij,
Asif Rahman,
Annamalai Natarajan,
Saman Parvaneh
Publication year - 2020
Publication title -
2019 computing in cardiology (cinc)
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.257
H-Index - 55
ISSN - 2325-887X
ISBN - 978-1-7281-6936-1
DOI - 10.22489/cinc.2019.110
Subject(s) - bioengineering , computing and processing , signal processing and analysis
Early prediction of sepsis onset can notify clinicians to provide timely interventions to patients to improve their clinical outcomes. The key question motivating this work is: given a retrospective patient cohort consisting of multivariate clinical time series (e.g., vital signs and lab measurement) and patients' demographics, how to build a model to predict the onset of sepsis six hours earlier? To tackle this challenge, we first used a recurrent imputation for time series (RITS) approach to impute missing values in multivariate clinical time series. Second, we applied temporal convolutional networks (TCN) to the RITS-imputed data. Compared to other sequence prediction models, TCN can effectively control the size of sequence history. Third, when defining the loss function, we assigned custom time- dependent weights to different types of errors. We achieved 9th place (team name = prna, utility score = 0.328) at the 2019 PhysioNet Computing in Cardiology Challenge, which evaluated our proposed model on a real-world sepsis patient cohort. At a follow-up ‘hackathon’ event, held by the challenge organizers, an improved version of our algorithm achieved 2nd place (utility score = 0.342).