
Segmentación de Imágenes de Resonancia Magnética IRM utilizando LS-SVM y Análisis Multiresolución Wavelet
Author(s) -
Luis A. Muñoz-Bedoya,
Luís Enrique Mendoza,
Hernando J. Velandia-Villamizar
Publication year - 2013
Publication title -
tecnológicas
Language(s) - Spanish
Resource type - Journals
eISSN - 2256-5337
pISSN - 0123-7799
DOI - 10.22430/22565337.381
Subject(s) - humanities , physics , philosophy
Actualmente, las máquinas de soporte vectorial (SVM) se han convertido en una herramienta poderosa para resolver problemas de clasificación no lineal. Para la optimización de esta herramienta, se ha desarrollado una reformulación conocida como LS-SVM (máquina de soporte vectorial de mínimos cuadrados), la cual trabaja con un modelo de minimización basada en funciones y polinomios de Lagrange. Por lo tanto, este trabajo presenta un método para la segmentación de imágenes de resonancia magnética específicamente para estudiar la morfología de los pulmones y lograr la cuantificación de características relevantes en dichas imágenes usando SVM y LS-SVM. Adicionalmente a la técnica de clasificación, en este trabajo se usaron técnicas como: análisis Wavelet para eliminación de información no relevante (compresión), y algoritmos Splines, para interpolar la información encontrada y cuantificar las características, que se basaron en el reconocimiento de área, forma y estructuras anormales presentes en la zona pulmonar de dichas imágenes.