z-logo
open-access-imgOpen Access
Весовые неравенства для преобразований Данкля — Рисса и градиента Данкля
Author(s) -
В. И. Иванов
Publication year - 2020
Publication title -
čebyševskij sbornik
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.273
H-Index - 6
eISSN - 2587-7119
pISSN - 2226-8383
DOI - 10.22405/2226-8383-2020-21-4-97-106
Subject(s) - physics
В пространствах с весом Данкля степенного типа на $\mathbb{R}^d$ за последние 30 лет построен содержательный гармонический анализ. Классический анализ Фурье на евклидовом пространстве соответствует безвесовому случаю. В гармоническом анализе Данкля важную роль играют преобразования Данкля--Рисса и потенциал Данкля--Рисса, определенные Тангавелу и Шу. В частности, они позволяют доказывать неравенства Соболева для градиента Данкля. Частные результаты здесь были получены Амри и Сифи, Абделькефи и Рачди, Велику. Опираясь на весовые неравенства для потенциала Данкля--Рисса и преобразований Данкля--Рисса, мы доказываем общие $(L^q,L^p)$-неравенства Соболева для градиента Данкля с радиальными степенными весами. Весовые неравенства для потенциала Данкля--Рисса были установлены ранее. $L^p$-неравенства для преобразований Данкля--Рисса с радиальным степенным весом устанавливаются в настоящей работе. Безвесовой вариант этих неравенств был доказан Амри и Сифи.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here