
О полноте списка выпуклых RR-многогранников
Author(s) -
Владимир Иванович Субботин
Publication year - 2020
Publication title -
čebyševskij sbornik
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.273
H-Index - 6
eISSN - 2587-7119
pISSN - 2226-8383
DOI - 10.22405/2226-8383-2020-21-1-297-309
Subject(s) - relative risk , relative motion , relative density , medicine , physics , chemistry , crystallography , confidence interval , microstructure , mechanics
В статье дано доказательство полноты перечня одного класса выпуклых симметричных многогранников в трёхмерном евклидовом пространстве. Этот класс принадлежит классу так называемых RR-многогранников. RR-многогранники характеризуются следующими условиями симметрии: у каждого многогранника класса RR существуют симметричные ромбические вершины и существуют грани, не принадлежащие ни одной звезде этих вершин; причём каждая грань, не входящая в звезду ромбической вершины, является правильной. Ромбичность вершины здесь означает, что звезда вершины составлена из n равных, одинаково расположенных ромбов. Симметричность вершины означает, что через неё проходит ось вращения порядка n её звезды. Ранее автором были найдены все многогранники с ромбическими или дельтоидными вершинами и локально симметричными гранями. При этом локально симметричные грани не принадлежат ни одной из ромбических или дельтоидных звёзд. Класс RR-многогранников получается из рассмотренных ранее заменой условия локальной симметрии неромбических граней условием их правильности. Таким образом, рассматриваемый класс RR связан с известным результатом Н. Джонсона и В. Залгаллера о перечислении всех выпуклых многогранников с условием правильности граней. Но, как показано в настоящей статье, RR-многогранники не могут быть просто получены из класса правильногранных, а требуют специального метода. Настоящая статья посвящена доказательству полноты класса RR-многогранников с двумя изолированными симметричными ромбическими вершинами V, W. При этом ромбы сходятся в вершинах V, W не обязательно своими острыми углами и V, W не обязательно разделены только одним поясом правильных граней.