
Алгебра рядов Дирихле моноида натуральных чисел
Author(s) -
Николай Николаевич Добровольский,
М. Н. Добровольский,
Николай Михайлович Добровольский,
И. Н. Балаба,
Irina Rebrova
Publication year - 2019
Publication title -
čebyševskij sbornik
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.273
H-Index - 6
eISSN - 2587-7119
pISSN - 2226-8383
DOI - 10.22405/2226-8383-2019-20-1-179-194
Subject(s) - physics , combinatorics , sigma , mathematics , quantum mechanics
В работе для произвольного моноида натуральных чисел строятся основы алгебры рядов Дирихле либо над числовым полем, либо над кольцом целых чисел алгебраического числового поля.Для любого числового поля $$\mathbb{K}$$ показано, что множество $$\mathbb{D}^*(M)_{\mathbb{K}}$$ всех обратимых рядов Дирихле из $$\mathbb{D}(M)_{\mathbb{K}}$$ является бесконечной абелевой группой, состоящей из рядов, у которых первый коэффициент отличен от нуля.Вводится понятие целого ряда Дирихле моноида натуральных чисел, которые образуют алгебру над кольцом целых алгебраических чисел $$\mathbb{Z}_\mathbb{K}$$ алгебраического поля $$\mathbb{K}$$. Показано, что для группы $$\mathbb{U}_\mathbb{K}$$ алгебраических единиц кольца целых алгебраических чисел $$\mathbb{Z}_\mathbb{K}$$ алгебраического поля $$\mathbb{K}$$ множество $$\mathbb{D}(M)_{\mathbb{U}_\mathbb{K}}$$ целых рядов Дирихле, у которых $$a(1)\in\mathbb{U}_\mathbb{K}$$, является мультипликативной группой.Для любого ряда Дирихле из алгебры рядов Дирихле моноида натуральных чисел определены приведенный ряд, необратимая часть и дополнительный ряд. Найдена формула разложения произвольного ряда Дирихле в произведение приведенного ряда и конструкции из необратимой части и дополнительного ряда.Для любого моноида натуральных чисел выделена алгебра рядов Дирихле, сходящихся на всей комплексной области. Также построена алгебра рядов Дирихле с заданной полуплоскостью абсолютной сходимости. Показано, что для любого нетривиального моноида M и для любого вещественного $$\sigma_0$$ найдется бесконечное множество рядов Дирихле из $$\mathbb{D}(M)$$ таких, что областью их голоморфности является $$\alpha$$-полуплоскость $$\sigma>\sigma_0$$.С помощью теоремы универсальности С. М. Воронина удалось доказать слабую форму теоремы универсальности для широкого класса дзета-функций моноидов натуральных чисел.В заключении рассмотрены актуальные задачи с дзета-функциями моноидов натуральных чисел, требующие дальнейшего исследования. В частности, если верна гипотеза Линника-Ибрагимова, то для них должна быть справедлива и сильная теорема универсальности.