
Моноиды натуральных чисел в теоретико-числовом методе в приближенном анализе
Author(s) -
Николай Николаевич Добровольский,
Николай Михайлович Добровольский,
Irina Rebrova,
Александр Валерьевич Родионов
Publication year - 2019
Publication title -
čebyševskij sbornik
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.273
H-Index - 6
eISSN - 2587-7119
pISSN - 2226-8383
DOI - 10.22405/2226-8383-2019-20-1-164-178
Subject(s) - mathematics , modulo , pure mathematics , mathematical analysis , discrete mathematics
В работе для каждого моноида M натуральных чисел определён новый класс периодических функций $$M_s^\alpha$$, который является подклассом известного класса Коробова периодических функций $$E_s^\alpha$$. Относительно нормы $$\|f(\vec{x})\|_{E_s^\alpha}$$ класс $$M_s^\alpha$$ является несепарабельным банаховым подпространством класса $$E_s^\alpha$$.Установлено, что класс $$M_s^\alpha$$ замкнут относительно действия интегрального оператора Фредгольма и на этом классе разрешимо интегральное уравнение Фредгольма второго рода. В работе получены оценки нормы образа интегрального оператора, которые содержат норму ядра и s-ю степень дзета-функции моноида M. Получены оценки на параметр $$\lambda$$, при которых интегральный оператор $$A_{\lambda,f}$$ является сжатием. Доказана теорема о представлении единственного решения интегрального уравнения Фредгольма второго рода в виде ряда Неймана.В работе рассмотрены вопросы решения дифференциального уравнения с частными производными с дифференциальным оператором $$Q\left(\frac{\partial }{\partial x_1},\ldots,\frac{\partial }{\partial x_s}\right)$$ в пространстве $$M^\alpha_{s}$$, который зависит от арифметических свойств спектра этого оператора.В работе обнаружен парадоксальный факт, что для моноида $$M_{q,1}$$ чисел сравнимых с 1 по модулю q квадратурная формула с параллелепипедальной сеткой для допустимого набора коэффициентов по модулю q точна на классе $$M_{q,1,s}^\alpha$$. Более того, это утверждение остается верным и для класса $$M_{q,a,s}^\alpha$$ с 1 < a < q, когда q - простое число. Так как функции из класса $$M_{q,a,s}^\alpha$$ с 1 < a < q не имеют нулевого коэффициента Фурье $$C(\vec{0})$$, то при простом q сумма значений функции по узлам соответствующей параллелепипедальной сетки будет нулевой.