
Н. М. Коробов и теория гиперболической дзета-функции решёток
Author(s) -
Irina Rebrova,
Анастасия Вячеславовна Кирилина
Publication year - 2018
Publication title -
čebyševskij sbornik
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.273
H-Index - 6
eISSN - 2587-7119
pISSN - 2226-8383
DOI - 10.22405/2226-8383-2018-19-2-340-366
Subject(s) - alpha (finance) , mathematics , statistics , construct validity , psychometrics
В работе продолжено исследование роли Н. М. Коробова в развитии теоретико-числового метода в приближенном анализе. Одно из центральных мест в теоретико-числовом методе в приближенном анализе занимает метод оптимальных коэффициентов. Первый пример гиперболической дзета-функции решёток появился в работах Н. М. Корбова и Н. С. Бахвалова в 1959 году как оценка погрешности интегрирования на классе $E_s^\alpha$ с помощью квадратурных формул, построенных на параллелепипедальных сетках. В данной работе выделены 5 этапов-направлений в теории гиперболической дзета-функции решёток. Во-первых, это этап становления общей теории, который исторически занимает период от 1959 года по 1990 год. За этот период Была построена теория квадратурных формул с обобщёнными параллелепипедальными сетками и показано, что норма погрешности приближенного интегрирования на классе $E_s^\alpha$ либо равна гиперболической дзета-функции решёток, случай целочисленной решётки, либо оценивается сверху через неё в случае произвольной решётки. Второй этап начался в середине 90-х годов, когда появилось новое направление исследований гиперболической дзета-функции решёток как функции комплексного аргумента $\alpha=\sigma+it$ на метрическом пространстве решёток. Это направление продолжает развиваться и по настоящее время. Следующий этап, который тоже начался в середине 90-х годов был связан с рассмотрением обобщённой гиперболической дзета-функции решёток, или другими словами гиперболической дзета-функции на сдинутых решётках. Четвертый этап, который стал самостоятельным направлением исследований, начался в конце 90-х, в начале 2000-х годов. Он связан с вопросом получения функционального уравнения для аналитического продолжения гиперболической дзета-функции решёток. Наконец, последнее новое направление этой теории логически возникшее из предыдущих связано с изучение дзета-функций моноидов натуральных чисел. В работе раскрыта определяющая роль профессора Н. М. Коробова в становлении и развитии теории гиперболической дзета-функции решёток.