
Calculation of integrals in MathPartner
Author(s) -
Gennadi Malaschonok,
А. В. Селиверстов
Publication year - 2021
Publication title -
discrete and continuous models and applied computational science
Language(s) - English
Resource type - Journals
eISSN - 2658-7149
pISSN - 2658-4670
DOI - 10.22363/2658-4670-2021-29-4-337-346
Subject(s) - mathematics , elliptic integral , ellipse , harmonic mean , set (abstract data type) , volume integral , algebra over a field , pure mathematics , mathematical analysis , computer science , geometry , integral equation , programming language
We present the possibilities provided by the MathPartner service of calculating definite and indefinite integrals. MathPartner contains software implementation of the Risch algorithm and provides users with the ability to compute antiderivatives for elementary functions. Certain integrals, including improper integrals, can be calculated using numerical algorithms. In this case, every user has the ability to indicate the required accuracy with which he needs to know the numerical value of the integral. We highlight special functions allowing us to calculate complete elliptic integrals. These include functions for calculating the arithmetic-geometric mean and the geometric-harmonic mean, which allow us to calculate the complete elliptic integrals of the first kind. The set also includes the modified arithmetic-geometric mean, proposed by Semjon Adlaj, which allows us to calculate the complete elliptic integrals of the second kind as well as the circumference of an ellipse. The Lagutinski algorithm is of particular interest. For given differentiation in the field of bivariate rational functions, one can decide whether there exists a rational integral. The algorithm is based on calculating the Lagutinski determinant. This year we are celebrating 150th anniversary of Mikhail Lagutinski.