z-logo
open-access-imgOpen Access
Simulation of non-stationary event flow with a nested stationary component
Author(s) -
Ruslan V. Pleshakov
Publication year - 2020
Publication title -
discrete and continuous models and applied computational science
Language(s) - English
Resource type - Journals
eISSN - 2658-7149
pISSN - 2658-4670
DOI - 10.22363/2658-4670-2020-28-1-35-48
Subject(s) - stationary sequence , series (stratigraphy) , event (particle physics) , sequence (biology) , poisson distribution , flow (mathematics) , random variable , mathematics , variable (mathematics) , statistical physics , stationary process , statistics , mathematical analysis , physics , geometry , geology , paleontology , quantum mechanics , biology , genetics
A method for constructing an ensemble of time series trajectories with a nonstationary flow of events and a non-stationary empirical distribution of the values of the observed random variable is described. We consider a special model that is similar in properties to some real processes, such as changes in the price of a financial instrument on the exchange. It is assumed that a random process is represented as an attachment of two processes - stationary and non-stationary. That is, the length of a series of elements in the sequence of the most likely event (the most likely price change in the sequence of transactions) forms a non-stationary time series, and the length of a series of other events is a stationary random process. It is considered that the flow of events is non-stationary Poisson process. A software package that solves the problem of modeling an ensemble of trajectories of an observed random variable is described. Both the values of a random variable and the time of occurrence of the event are modeled. An example of practical application of the model is given.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here