z-logo
open-access-imgOpen Access
Averaging of Higher-Order Parabolic Equations with Periodic Coefficients
Author(s) -
A. A. Miloslova,
T. A. Suslina
Publication year - 2021
Publication title -
contemporary mathematics fundamental directions
Language(s) - English
Resource type - Journals
eISSN - 2949-0618
pISSN - 2413-3639
DOI - 10.22363/2413-3639-2021-67-1-130-191
Subject(s) - sobolev space , exponent , mathematics , operator (biology) , mathematical analysis , norm (philosophy) , order (exchange) , space (punctuation) , elliptic operator , cauchy distribution , pure mathematics , philosophy , linguistics , biochemistry , chemistry , finance , repressor , political science , transcription factor , law , economics , gene
In L2(Rd;Cn), we consider a wide class of matrix elliptic operators A of order 2p (where p2) with periodic rapidly oscillating coefficients (depending on x/). Here 0 is a small parameter. We study the behavior of the operator exponent e-A for 0 and small . We show that the operatore-A converges as 0 in the operator norm in L2(Rd;Cn) to the exponent e-A0 of the effective operator A0. Also we obtain an approximation of the operator exponent e-A in the norm of operators acting from L2(Rd;Cn) to the Sobolev space Hp(Rd; Cn). We derive estimates of errors of these approximations depending on two parameters: and . For a fixed 0 the errors have the exact order O(). We use the results to study the behavior of a solution of the Cauchy problem for the parabolic equation u(x,)= -(A u)(x,)+F(x,) in Rd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom