
Construction of Optimal Interpolation Formulas in the Sobolev Space
Author(s) -
Kh. M. Shadimetov,
Kh. M. Shadimetov,
Abdullo R. Hayotov,
А Р Хаетов,
F.A. Nuraliev,
F.A. Nuraliev
Publication year - 2018
Publication title -
sovremennaâ matematika. fundamentalʹnye napravleniâ
Language(s) - English
Resource type - Journals
eISSN - 2949-0618
pISSN - 2413-3639
DOI - 10.22363/2413-3639-2018-64-4-723-735
Subject(s) - interpolation (computer graphics) , sobolev space , mathematics , linear interpolation , space (punctuation) , birkhoff interpolation , bilinear interpolation , trilinear interpolation , operator (biology) , interpolation space , mathematical analysis , pure mathematics , computer science , functional analysis , computer graphics (images) , statistics , polynomial , transcription factor , gene , operating system , animation , biochemistry , chemistry , repressor
In the present paper, using the discrete analog of the dierential operator d2m/dx2m, optimal interpolation formulas are constructed in L2(4)(0, 1) space. The explicit formulas for coecients of optimal interpolation formulas are obtained.