z-logo
open-access-imgOpen Access
Roll-over stability as a problem of high-rise buildings’ designing
Author(s) -
Olga Vyacheslavovna Inozemtseva,
В. К. Иноземцев,
G.R. Murtazina
Publication year - 2021
Publication title -
stroitelʹnaâ mehanika inženernyh konstrukcij i sooruženij
Language(s) - English
Resource type - Journals
eISSN - 2587-8700
pISSN - 1815-5235
DOI - 10.22363/1815-5235-2021-17-3-228-247
Subject(s) - nonlinear system , linearization , stability (learning theory) , constructive , tracing , feedback linearization , mathematics , computer science , control theory (sociology) , process (computing) , physics , artificial intelligence , control (management) , quantum mechanics , machine learning , operating system
Roll-over stability of tall buildings under wind loads is considered. The nonlinear nature of the problem is taken into account, including geometric, physical, and structural non-linearity. The problem is solved on the base of a system of linearized incremental equations of structural mechanics that describes the behavior of a system tall building - foundation soil. Several methods are examined for solving nonlinear problems of roll-over stability, specifically: 1) deformation method of systems equilibrium states tracing; 2) method of linearization of nonlinear equations and systems equilibrium states tracing; 3) method of linearization of nonlinear physical relations of a systems with constructive, static, geometric nonlinearity; 4) method of linearization of nonlinear physical relations of a system with constructive nonlinearity based on nonlinear incremental structural mechanics; 5) method of the deformation process tracing for a physically nonlinear soil base, given the increase of discharge zones and constructive nonlinearity. Each of these methods is used to solve a model task. These tasks take into account roll-over stability of high structures under action of wind loads. In general, the problem of roll-over stability of a high object can be represented as repeatedly nonlinear one with various types of non-linearity. In this regard, in the practice of high-rise buildings designing, it is necessary to develop scientifically and methodically substantiated methods of assessing roll-over stability, considering non-linear factors. Taking these factors into account will make it possible to assess the roll-over stability of a high-rise object more accurate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here