
k-Product Cordial Behaviour of Union of Graphs
Author(s) -
K. Jeya Daisey,
R. Santrin Sabibha,
P. Jeyanthi,
Maged Z. Youssef
Publication year - 2022
Publication title -
journal of the indonesian mathematical society
Language(s) - English
Resource type - Journals
eISSN - 2460-0245
pISSN - 2086-8952
DOI - 10.22342/jims.28.1.1025.1-7
Subject(s) - mathematics , combinatorics , product (mathematics) , integer (computer science) , enhanced data rates for gsm evolution , discrete mathematics , geometry , telecommunications , computer science , programming language
Let f be a map from V (G) to {0, 1, ..., k − 1} where k is an integer, 1 ≤ k ≤ |V (G)|. For each edge uv assign the label f(u)f(v)(mod k). f is called a k-product cordial labeling if |vf (i) − vf (j)| ≤ 1, and |ef (i) − ef (j)| ≤ 1, i, j ∈ {0, 1, ..., k − 1}, where vf (x) and ef (x) denote the number of vertices and edges respectively labeled with x (x = 0, 1, ..., k − 1). In this paper, we investigate the k-product cordial behaviour of union of graphs