z-logo
open-access-imgOpen Access
ASYMPTOTICS OF THE FILTRATION PROBLEM WITH ALMOST CONSTANT COEFFICIENTS
Author(s) -
Liudmila Kuzmina,
I. L. Osipov
Publication year - 2021
Publication title -
international journal for computational civil and structural engineering
Language(s) - English
Resource type - Journals
eISSN - 2588-0195
pISSN - 2587-9618
DOI - 10.22337/2587-9618-2021-17-2-43-49
Subject(s) - filtration (mathematics) , grout , constant (computer programming) , suspension (topology) , porosity , homogeneous , mechanics , porous medium , geotechnical engineering , flow (mathematics) , mathematics , materials science , geology , physics , computer science , statistics , combinatorics , homotopy , pure mathematics , programming language
During the construction of hydraulic and underground structures, a grout solution is pumped into the ground to create waterproof partitions. The liquid grout is filtered in the porous rock and clogs the pores when hardened. The mathematical model of deep bed filtration describes the transfer of suspension particles and colloids by a fluid flow through the pores of a rock. For a one-dimensional filtration problem in a homogeneous porous medium with almost constant coefficients, an asymptotic solution is constructed. The asymptotics is compared with the numerical solution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here