z-logo
open-access-imgOpen Access
MOLECULAR DOCKING STUDIES, IN SILICO ADMET SCREENING OF SELECTED NOVEL AZETIDINE SUBSTITUTED NAPHTHALENE’S TARGETING PROTEASE ENZYME AGAINST SARS COV-19
Author(s) -
S. Gomathy
Publication year - 2021
Publication title -
journal of medical pharmaceutical and allied sciences
Language(s) - English
Resource type - Journals
ISSN - 2320-7418
DOI - 10.22270/jmpas.v10i6.2505
Subject(s) - docking (animal) , in silico , adme , dock , protease , enzyme , protein data bank (rcsb pdb) , chemistry , covid-19 , biochemistry , lopinavir , computational biology , virology , stereochemistry , pharmacology , biology , medicine , virus , in vitro , infectious disease (medical specialty) , nursing , disease , pathology , antiretroviral therapy , viral load , gene
The emergence and dissemination of SARS COVID-19 has resulted in a high death rate, necessitating a large-scale search for viable antiSARS COVID-19 therapeutics. The binding mechanisms of 25 azetidines bearing naphthalene derivatives as Anti-SARS COVID-19 inhibitors, targeting protease enzyme via molecular docking, ADME and Toxicity Prediction (TOPKAT) investigations were investigated in this work, and they were compared to the FDA-approved medicine remdesivir. Compounds 22, 18, 17, 14 had the highest Lib Dock score among the 25 derivatives, with the X-ray crystallographic structure of M pro (PDB ID: 6LU7) revealing important interactions with residues Glu166, Gln192, Ala191, Thr190, Ser144, Cys145. These findings imply that these azetidine derivatives may be useful in the development of more effective anti-SARS COVID-19 agents. Keywords: Main protease enzyme, SARS COVID-19, Azetidines, Naphthalenes, In-silicoscreening

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here