z-logo
open-access-imgOpen Access
PHENOTYPIC DETECTION OF EFFLUX MECHANISM IN AMIKACIN-RESISTANT ACINETOBACTER ISOLATES FROM TWO DIFFERENT STATES IN SOUTH INDIA
Author(s) -
Fathimunnisa Koka
Publication year - 2021
Publication title -
journal of medical pharmaceutical and allied sciences
Language(s) - English
Resource type - Journals
ISSN - 2320-7418
DOI - 10.22270/jmpas.v10i4.1471
Subject(s) - amikacin , efflux , acinetobacter , microbiology and biotechnology , acinetobacter baumannii , aminoglycoside , antibiotics , drug resistance , multiple drug resistance , biology , bacteria , pseudomonas aeruginosa , biochemistry , genetics
Acinetobacter has already gained resistance to the majority of antibiotics available. Aminoglycosides are commonly used to treat invasive infections. Aminoglycoside resistance is associated with decreased drug absorption, aminoglycoside modification, and aminoglycoside efflux. The aim of this study was to detect the presence of an efflux mechanism in amikacin-resistant Acinetobacter isolated from hospital wards using Carbonyl Cyanide 3- Chlorophenylhydrazone (CCCP). One hundred isolates of Acinetobacter were isolated from tertiary care hospitals in two distinct South Indian states. Antibacterial susceptibility patterns were discovered between 2017 and 2019. Amikacin minimum inhibitory concentration (MIC) for resistant Acinetobacter isolates was determined using Clinical and Laboratory Standards Institute (CLSI) standards. The efflux system activity was determined using CCCP. Among 100 Acinetobacter baumannii isolates, 49 isolates with amikacin resistance were found. The MIC’s of Acinetobacter ranged between 2 – 1024 μg/mL for the amikacin studied. After treatment with the efflux pump inhibitor, 38.77% of isolates became less resistant to amikacin, as determined by phenotypic detection of efflux pumps, showing a decrease in antibiotic MICs of at least four fold. The data demonstrated the importance of efflux pump activity conferring amikacin resistance on Acinetobacter clinical isolates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here