
In-silico Absorption, Distribution, Metabolism, Elimination and Toxicity profile of 9,12,15-Octadecatrienoic acid (ODA) from Moringa oleifera
Author(s) -
K. Parvathi,
C. Kandeepan,
M. Sabitha,
N. Senthilkumar,
S. Ramya,
N. Manikanta Boopathi,
L. Ramanathan,
R. Jayakumararaj
Publication year - 2022
Publication title -
journal of drug delivery and therapeutics
Language(s) - English
Resource type - Journals
ISSN - 2250-1177
DOI - 10.22270/jddt.v12i2-s.5289
Subject(s) - in silico , moringa , chemistry , fatty acid , double bond , pharmacology , medicine , biochemistry , traditional medicine , gene , polymer chemistry
9,12,15-Octadecatrienoic acid (ODA) a carboxylic acid composed of 18 carbon atoms and three cis double bonds. ODA is a plant derived essential fatty acid indispensable to the human system. ODA refers to many different structural and conformational isomers, that differ in the position of the double bonds along the backbone and on whether they are in cis ('Z') or trans ('E') conformation. It has been well established that ODA can only be outsourced from food and then converted into eicosa-pentaenoic acid (EPA) and docosa-hexaenoic acid (DHA) in the human system. However, this metabolic process is highly limited and the rate of conversion is influenced by several factors such as dose, gender, and disease. Studies suggest that ODA is associated with reduced risk of fatal ischemic heart disease. Further, higher intake may reduce the risk of sudden death among prevalent myocardial infarction in patients consistent with induced antiarrhythmic effect. ODA significantly reduces blood clots. Traditional usage of ODA is attributed to its cardiovascular-protective, anti-cancer, neuro-protective, anti-osteoporotic, anti-inflammatory, and anti-oxidative properties. Recent pharmacological indicate that ODA has anti-metabolic syndrome, anticancer, anti-inflammatory, anti-oxidant, anti-obesity, neuro-protective, and more specifically involved in the regulation of gut-micro-floral functionalities. Studies, both experimental and clinical trials indicate that ODA has anti-metabolic syndrome effects. In short, ODA is potentially used to treat many diseases, but in-depth ADMET studies are required to firmly re-establish its clinical efficacy and market potential.
Keywords: ADMET; Moringa oleifera; Secondary Metabolites; Natural Products (NPs); Bioactive Substances; Octadecatrienoic acid (ODA); Eicosa-Pentaenoic Acid (EPA); Docosa-Hexaenoic Acid (DHA)